Solving Structured Continuous-Time Markov Decision Processes

نویسندگان

  • Kin Fai Kan
  • Christian R. Shelton
چکیده

We present an approach to solving structured continuous-time Markov decision processes. We approximate the the optimal value function by a compact linear form, resulting in a linear program. The main difficulty arises from the number of constraints that grow exponentially with the number of variables in the system. We exploit the representation of continuous-time Bayesian networks (CTBNs) to describe the Markov process. We show that by exploiting the structure of the CTBN, we can reduce the growth in the number of constraints to be polynomial. We provide theoretic bounds on the quality of the approximation and experimental results on problems of different sizes, demonstrating the scalability and fidelity of our approach.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On $L_1$-weak ergodicity of nonhomogeneous continuous-time Markov‎ ‎processes

‎In the present paper we investigate the $L_1$-weak ergodicity of‎ ‎nonhomogeneous continuous-time Markov processes with general state‎ ‎spaces‎. ‎We provide a necessary and sufficient condition for such‎ ‎processes to satisfy the $L_1$-weak ergodicity‎. ‎Moreover‎, ‎we apply‎ ‎the obtained results to establish $L_1$-weak ergodicity of quadratic‎ ‎stochastic processes‎.

متن کامل

An MCMC Approach to Solving Hybrid Factored MDPs

Hybrid approximate linear programming (HALP) has recently emerged as a promising framework for solving large factored Markov decision processes (MDPs) with discrete and continuous state and action variables. Our work addresses its major computational bottleneck – constraint satisfaction in large structured domains of discrete and continuous variables. We analyze this problem and propose a novel...

متن کامل

Solving Generalized Semi-Markov Processes using Continuous Phase-Type Distributions

We introduce the generalized semi-Markov decision process (GSMDP) as an extension of continuous-time MDPs and semi-Markov decision processes (SMDPs) for modeling stochastic decision processes with asynchronous events and actions. Using phase-type distributions and uniformization, we show how an arbitrary GSMDP can be approximated by a discrete-time MDP, which can then be solved using existing M...

متن کامل

Solving Generalized Semi-Markov Decision Processes Using Continuous Phase-Type Distributions

We introduce the generalized semi-Markov decision process (GSMDP) as an extension of continuous-time MDPs and semi-Markov decision processes (SMDPs) for modeling stochastic decision processes with asynchronous events and actions. Using phase-type distributions and uniformization, we show how an arbitrary GSMDP can be approximated by a discrete-time MDP, which can then be solved using existing M...

متن کامل

Abstraction and Refinement for Solving Continuous Markov Decision Processes

ion and Refinement for Solving Continuous Markov Decision Processes Alberto Reyesand Pablo Ibargüengoytia Inst. de Inv. Eléctricas Av. Reforma 113, Palmira, Cuernavaca, Mor., México {areyes,pibar}@iie.org,mx L. Enrique Sucar and Eduardo Morales INAOE Luis Enrique Erro 1, Sta. Ma. Tonantzintla, Pue., México {esucar,emorales}@inaoep.mx

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008